Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks

This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha−1 (average = 55.8 Mg ha−1); below-ground biomass ranged between 4.06 and 436.47 Mg ha−1 (average = 81.47 Mg ha−1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha−1 (average = 64.52 Mg C ha−1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.

Title: 

Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks
Authors: Pham, T.D.
Yoshino, K.
Bui, D.T.
Keywords: ALOS-2 PALSAR
Biomass
Hai Phong
multi-layer perceptron neural networks
Sonneratia caseolaris
Issue Date: 2016
Publisher: Taylor and Francis Inc.
Abstract: This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha−1 (average = 55.8 Mg ha−1); below-ground biomass ranged between 4.06 and 436.47 Mg ha−1 (average = 81.47 Mg ha−1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha−1 (average = 64.52 Mg C ha−1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.
Description: GIScience and Remote Sensing Volume 54, Issue 3, 4 May 2017, Pages 329-353
URI: http://www.tandfonline.com/doi/abs/10.1080/15481603.2016.1269869?journalCode=tgrs20
http://repository.vnu.edu.vn/handle/VNU_123/32555
ISSN: 15481603
Appears in Collections:Bài báo của ĐHQGHN trong Scopus

Nhận xét

Bài đăng phổ biến từ blog này

Search for Hidden-Sector Bosons in B-0 -> K*(0)mu(+)mu(-) Decays

Measurement of the isospin asymmetry in B → K (*)μ +μ - decays